
January 2005 www.stsc.hill.af.mil 15

Let us take a look at two different scenar-
ios of development teams challenged to

integrate different computing devices or
upgrades into their systems.

Scenario 1: A development team is
charged with creating a software system that
users can access through a variety of client
computing devices. Tasked with providing
desktop access for internal users, Web access
for external users, access via a wireless-
enabled Personal Digital Assistant (PDA),
and voice-only access through telephones,
the development team writes user interfaces
in Java for the desktop platform, Hyper Text
Markup Language (HTML) for the Web, and
VoiceXML [eXtensible Markup Language]
for the voice interface. Having selected Palm
devices, they write the PDA user interface in
C for the PalmOS. As the system evolves,
they spend considerable effort making the
same or similar changes to each of these user
interfaces. A year into the project, manage-
ment decides to drop the Palm device and
instead support PocketPC PDAs. The team
rewrites the Palm user interface to run on
PocketPCs, which increases the project cost
and delays the schedule.

Scenario 2: A weapon systems project is
charged with improving the usability charac-
teristics of its software user interfaces and
adopts an iterative usability design process.
The user interface team needs to get an early
start on creating usability prototypes, but the
deployment hardware, operating system, lan-
guage, and user interface toolkit have not
been selected yet. The user interface design
team creates the usability prototypes in
VisualBasic, and when the deployment plat-
form is selected, rewrites the entire user
interface in C++. A few years later, a technol-
ogy refresh is planned to upgrade the deploy-
ment platform to take advantage of new
technologies. Plans for the upgrade are
dropped because the expense of rewriting
the user interface for the new platform is
prohibitive.

Unfortunately, scenarios like these two

are all too common for development teams
trying to integrate different computing
devices into their systems. While hardware
vendors have given us a rich array of com-
puting devices – PDAs with wireless con-
nectivity, cell phones, even the telephone –
the promise of these devices in providing
portable and easy-to-use access to data is dif-
ficult to realize using conventional software
development tools.

The problem is that the languages and
toolkits we use to describe software user
interfaces are tightly tied to the underlying
platform. Not only does this require devel-
opment teams to maintain proficiency in
many different languages, but it is difficult to
achieve reuse across these languages: When
the user interface changes, changes must be
applied separately to each platform’s user
interface code.

What if a single language existed that
could describe user interfaces independently
of client device? Such a language would need
to be able to completely describe the user
interface and its interactions with the under-
lying application logic. It would need to be
flexible enough to describe user interfaces
using widely different metaphors such as
graphic user interfaces, voice interfaces, inter-
faces for automotive on-board computers
with unconventional interaction devices, and
interfaces for devices not yet invented such as
those embedded in soldiers’ uniforms.

Such a language exists: the User Interface
Markup Language (UIML) [1]. UIML is an
XML-compliant language created with the
goal of describing any user interface for any
device, regardless of operating system or tar-
get programming language. User interface
descriptions written in UIML are rendered for
specific target platforms, much in the same
way that documents described in HTML are
translated into viewable documents by Web
browsers. UIML renderers can either be
interpreters that read the UIML and create
the user interface at run time, or compilers
that translate UIML into other languages.

UIML renderers have been developed for
Java, HTML, Wireless Markup Language
(WML), VoiceXML1, .NET [2], Python [3],
and even for augmented reality applications
[4]. UIML was the subject of an internation-
al conference in 20012.

Original Motivation for UIML
UIML was developed by a team of
researchers in Blacksburg, Va., starting in
1997, and has been enhanced by several
organizations, including Virginia Tech. The
team was frustrated with the poor usability
characteristics of many software user inter-
faces and the difficulty in creating good user
interfaces with existing languages and tools.
Increasingly, user interface design required
skills often not present in development
teams, such as visual layout, an orientation
toward how human users carry out tasks, and
graphic design. Yet, designers were required
to use programming languages such as C,
C++, and Java, which were fundamentally
designed to describe application logic.

These problems led to a desire to create
a language designed specifically for user
interface design. To stay oriented to the
needs of user interface designers, UIML was
designed as a declarative language; that is,
UIML would describe what the user inter-
face looks like (as HTML describes docu-
ments), rather than the steps followed in
building the user interface (as do languages
such as C++ and Java). UIML is an XML-
compliant language taking advantage of the
availability of XML tools. UIML is an open
language being standardized through the
Organization for the Advancement of
Structured Information Standards (OASIS)
[5]3; the language specification is available at
<www.uiml.org>.

UIML Applications in DoD
UIML is gaining interest in the Department
of Defense as a technology for implement-
ing user interfaces for complex software sys-
tems with long lifetimes. The Navy’s Tactical

Introduction to the
User Interface Markup Language

Current languages and tools for creating software user interfaces are tightly tied to the computing device on which the user inter-
face runs. For example, development teams often use Java or C++ for graphic user interfaces, Hyper Text Markup Language
for Web interfaces, the Wireless Markup Language for cell phones, and VoiceXML [eXtensible Markup Language] for
voice interfaces. The tight coupling of language to device means that to use a variety of devices with software systems, develop-
ment teams must master different languages and toolkits and maintain different code bases for each device. This article intro-
duces the User Interface Markup Language (UIML), an open XML-compliant language capable of describing user inter-
faces for virtually any computing device. It describes how UIML can be used for creating multi-platform user interfaces, how
it is being applied in defense applications, and introduces UIML syntax.

Jonathan E. Shuster
Acumenia, Inc.

Open Source Software

16 CROSSTALK The Journal of Defense Software Engineering January 2005

Tomahawk Weapons Control System
(TTWCS) program sees UIML as a way to
help automate the generation of deployable
code from usability prototypes. UIML also
addresses the need to adapt weapon system
control user interfaces to accommodate dif-
ferent watchstations used on different ship
classes. TTWCS is sponsoring the develop-
ment of UIML authoring and deployment
tools under the Small Business Innovation
Research (SBIR) program. A preliminary
estimate made under the SBIR Phase I pro-
ject suggested that adopting UIML could

save the program between $1.5 million and
$3 million for a typical TTWCS software ver-
sion, allowing accelerated delivery of critical-
ly needed new features to the fleet.

The Navy’s DD(X) shipbuilding pro-
gram sees UIML as an excellent way to
implement a common computing environ-
ment across all shipboard software systems.
UIML makes it possible to apply common
characteristics to all user interfaces such as
the look and feel and layout of interaction
mechanisms. UIML also provides a way to
achieve significant reuse across software sys-

tems, not only for visual characteristics, but
also for underlying mechanisms such as the
programming interfaces used to interact with
the underlying applications.

In the Army, UIML has been used on the
Army Training Information Architecture
program to make it possible to deliver train-
ing documentation to small-aperture devices
such as handheld computers and PDAs.
Even though much of the Army’s training
documentation is in HTML format, viewing
legacy HTML on PDAs presents a host of
usability problems (described as “like watch-
ing TV through a soda straw”). In a pilot
project, legacy HTML was converted into
UIML, and then delivered by a UIML server
to the client device. Based on the device
requesting the document (desktop or PDA),
the UIML server transformed the UIML
description based on device characteristics,
then rendered the UIML into HTML tai-
lored for optimal viewing on the device.

UIML: A Canonical
Meta-Language
UIML is a canonical meta-language for
describing software user interfaces. As a
canonical language, UIML regularizes the
idiosyncrasies in syntax across device lan-
guages. The table below shows how UIML
reduces the syntactical differences across
HTML, Java, and C++ with the GTK+
(Gnu’s Not Unix [GNU] Image
Manipulation Program Toolkit) widget set to
canonical form.

HTML:
<input name=“submit”>

Java:
JButton submit = new JButton();

C++/GTK:
GtkWidget *button = gtk_button_new();

UIML:
<part class=“Button” id=“okButton”/>

By reducing the definition to a standard
form, renderers can be used to translate
UIML into any of the other forms. This
means that as new devices, operating sys-
tems, and programming languages emerge, it
is not necessary to change UIML user inter-
face descriptions. Rather, the UIML is simply
re-rendered for the new platform.

Being a meta-language gives UIML the
flexibility to describe user interfaces for wide-
ly different devices. Rather than having many
toolkit-specific tags (such as <menu> or
<button>) covering all possible user inter-
face metaphors, UIML uses a few powerful
tags (such as <part> and <property>). As
with XML, where you add a schema to make
it useful, you add a vocabulary to UIML to
define the abstractions that are needed to
describe the user interface. These abstrac-

UIML Examples 1-4

<?xml version=“1.0”?>
<!DOCTYPE uiml PUBLIC “-//UIT//DTD UIML 3.0x Draft//EN”
“http://uiml.org/dtds/UIML3_ 0a.dtd”>

<!-- Example 1: The UIML Skeleton -->

<uiml>
<interface>

<structure>…</structure>
<style>…</style>
<content>…</content>
<behavior>…</behavior>

</interface>
<peers>

<logic>…</logic>
<presentation base=“…”…/>

</peers>
</uiml>

<!-- Example 2: Defining Parts -->
<structure>

…
<part id=“okButton” class=“Button”/>
…
<part id=“aPanel” class=“Panel”>

<part id=“aField” class=“Field”/>
</part>
…

</structure>

<!-- Example 3: Defining Properties of Parts -->
<style>

…
<property class-name=“Button” name=“size”>20,20</property>
…
<property part-name=“okButton” name=“size”>40,20</property>
…

</style>

<!-- Example 4: Two Ways to Define Content -->
<style>

…
<property part-name=“okButton” name=“text”>Okay</property>
…
<property part-name=“aField” name=“text”>

<reference constant-name=“welcomeText”/>
</property>
…

</style>

Figure 1: UIML Examples 1-4

Introduction to the User Interface Markup Language

January 2005 www.stsc.hill.af.mil 17

tions can be platform-specific (e.g., defining a
JButton class for Java Swing), or generic
across similar platforms (e.g., a Button class to
use for graphic user interfaces)4. Vocabularies
can be used to define domain-specific
abstractions such as SteeringWheelButton for
automotive user interfaces.

UIML vocabularies define allowable
parts and classes, properties, and events, and
map these abstractions to specific widgets in
the target language and toolkit. For example,
a Button class can be defined that maps to
java.swing.JButton for Java with the Swing
toolkit. Vocabularies have been defined for
Java, HTML, VoiceXML, WML, and other
target languages5.

What Does UIML Look Like?
The UIML Skeleton
Describing a user interface requires answer-
ing six questions:
1. What structure of parts makes up the

user interface?
2. What presentation style should be used

for each part?
3. What is each part’s content?
4. What behavior do parts have (that is,

what should happen when, for example,
a user clicks on a button)?

5. How does the user interface connect to
the underlying application logic?

6. How are parts mapped to widgets in the
target toolkit?
UIML separately describes these six

aspects of the user interface definition. The
answers to the first four questions define the
interface itself; the last two define how the
interface interacts with the outside world.
Thus, the basic skeleton of a UIML user
interface is shown in Example 1 in Figure 1.

The first group of lines is an XML doc-
ument type declaration that marks this as a
UIML document. The remaining lines show
the basic skeleton of a UIML document.
Note that the <structure>, <style>, <con-
tent>, and <behavior> tags address the first
four questions about the user interface. The
<logic> tag addresses connections to the
underlying application logic (question No. 5),
and the <presentation> tag addresses tool-
kit mappings (question No. 6).

Defining these six aspects separately
enables reuse. For example, consider an
automotive manufacturer creating Web ver-
sions of the owner’s manuals for each of its
models. It is not unusual for owner’s manu-
als to be translated into as many as 25 differ-
ent human languages depending on where
the model is sold. Using HTML, 25 separate
Web applications would be needed for each
model. If the structure of the owner’s man-
ual changes, the changes would need to be
applied to all 25 Web applications.

With UIML, the owner’s manual applica-

tion would be defined as a single UIML
document. Different <content> sections
would be defined for each language, and the
appropriate content section specified at
rendering time. The structure, style, and
other characteristics of the owner’s manual
application are defined only once, and
changes to these characteristics need only
be applied in one place.

Similarly, reuse can be achieved with the
other major sections of a UIML document.
For example, different style guidelines can be

applied to user interfaces by using different
<style> sections. Application interfaces,
defined in the <logic> section, can be writ-
ten once and reused in UIML written for dif-
ferent platforms.

UIML has several mechanisms to sup-
port reuse. Most notably, it includes the con-
cept of templates, external files containing
commonly used UIML definitions. In addi-
tion, some renderers allow specifying UIML
tags by name; for example, allowing multiple
<content> tags for different human lan-

UIML Examples 5-8

<!-- Example 5: Defining Alternative Content Sets -->
<content id=“English” xml:lang=“en-US”>

<constant id=“welcomeText”>Welcome</constant>
…

</content>
<content id=“French” xml:lang=“fr”>

<constant id=“welcomeText”>Bienvenue</constant>
…

</content>

<!-- Example 6: Defining Behavior -->
<behavior>

<rule>
<condition>

<event class=“actionPerformed” part-name=“okButton”/>
</condition>
<action>

<property part-name=“aWindow” name=“visible”>
FALSE

</property>
<property part-name=“aDialog” name=“visible”>

TRUE
</property>

</action>
</rule>

</behavior>

<!-- Example 7: Making Application Calls -->
<behavior>

<rule>
<condition>

<event class=“actionPerformed” part-name=“okButton”/>
</condition>
<action>

<property part-name=“aLabel” name=“text”>
<call name=“Counter.count”/>

</property>
</action>

</rule>
</behavior>

<!-- Example 8: Mapping UIML Calls to The Application -->
<logic>

<d-component id=“Counter” maps-to=“AppCounter”>
<d-method id=“count” return-type=“int” maps-to=“bumpCount”/>

</d-component>
</logic>

Figure 2: UIML Examples 5-8

Open Source Software

18 CROSSTALK The Journal of Defense Software Engineering January 2005

guages, and selecting which content set to
use at rendering time.

The following sections give an overview
of the six sections of a UIML document. It
is not possible to completely describe UIML
syntax in one article; however, considerable
information about UIML is available in the
references listed at the end of this article.

Defining Structure
The <structure> tag defines the parts that
make up the user interface. Nested parts are
defined, appropriately, by nesting <part>
tags. Example 2 in Figure 1 (see page 16)
shows UIML defining a top-level part (a but-
ton of class Button named okButton), and a set
of nested parts (a panel containing a text
field).

Defining Style
The <style> tag describes the properties
of each part. Properties can be associated
with either individual parts or classes of
parts, as shown in Example 3 in Figure 1
(see page 16).

In the first <property> tag, the default

size of all buttons in the Button class is set
to 20 by 20 pixels. In the second <property>
tag, the size of the button named okButton
is set to 40 by 20 pixels.

Defining Content
Content can be defined in UIML as a part’s
property, or can be defined in a separate con-
tent section as described earlier. Example 4
in Figure 1 (see page 16) shows both meth-
ods: The first property tag defines the con-
tent of okButton as the text Okay. The sec-
ond property tag references a constant
named welcomeText.

The constant referenced in the second
property tag is defined in the <content> tag.
Example 5 in Figure 2 (see page 17) shows
UIML defining two alternative content tags,
for English and French, for selection at ren-
dering time.

Defining Behavior
Behavior is defined as a set of rules. Each
rule describes an action to be carried out
under a given condition. Actions can include
changing properties or making application

calls. Example 6 in Figure 2 (see page 17)
shows a rule specifying that when a button is
pressed, the active window is closed and a
confirmation dialog is opened. The window
is closed by setting its visible property to
FALSE; similarly, the dialog is opened by set-
ting its visible property to TRUE.

In this example, the condition is the
occurrence of an event. Allowable event
types are defined in the vocabulary. Other
conditions may also be used such as equality
between a property and a constant, for
example.

Making Application Calls
Calls to the underlying application are
defined with the <call> tag. In Example 7 in
Figure 2 (see page 17), the result of the call
is used to set the content of a text label.

The <call> tag references the value
returned by the count method on the Counter
object. Placing the call tag in the <property>
tag has the effect of resetting the text prop-
erty to the value returned by the <call>.

Mapping Calls to Application Logic
Note that <call> tags define application calls
in an abstract form. The <logic> section
maps UIML calls to specific objects and
methods (or procedures) in the underlying
application. This means calls can be easily
remapped to different application interface
calls simply by changing the definition in the
<logic> section. Example 8 in Figure 2 (see
page 17) maps the abstract call Counter.count
to a specific object and method in the under-
lying application (AppCounter.bumpCount).

In this example, the <d-component>
tag (for defined component) maps the UIML
component Counter with the application’s
AppCounter object. Similarly, the <d-
method> tag (for defined method) maps the
UIML count method with the AppCounter
object’s bumpCount method, and specifies
an integer return type.

Responding to Application Events
Rules can be defined that allow the user
interface to respond to events received by
the underlying application. Example 9 in
Figure 3 shows a rule that allows a part to
display updated global positioning system
(GPS) coordinates upon receiving an event
indicating the location has changed.

In this example, the condition that fires
the rule is when the event equals a certain
constant. The action is to call a method to
get new GPS coordinates, and display the
return in the GPSLocationLabel part.

Mapping UIML Abstractions to
Specific Toolkit Widgets
The <presentation> section defines the
vocabulary to be used. Normally, the <pre-

UIML Examples 9-11

<!-- Example 9: Responding to an Application Event -->
<rule>

<condition>
<equal>

<event part-name=“GPSLocationLabel”
class=“propertyChange”
name=“propertyName”/>

<constant value=“GPS_CHANGE”/>
</equal>

</condition>
<action>

<property part-name=“GPSLocationLabel” name=“text”>
<call name=“navigation.getNewGPSCoordinates”/>

</property>
</action>

</rule>

<!-- Example 10: Specifying A Vocabulary -->
<presentation source=“Java_1.3_Harmonia_1.0.uiml#vocab”/>

<!-- Example 11: Vocabulary Mappings -->
<uiml>

<template id=“vocab”>
<presentation base=“Java_1.3_Harmonia_1.0”>

<d-class id=“JButton” used-in-tag=“part”
maps-type=“class”
maps-to=“javax.swing.JButton”>
…

</d-class>
…

</presentation>
</template>

</uiml>

Figure 3: UIML Examples 9-11

January 2005 www.stsc.hill.af.mil 19

sentation> tag references a vocabulary
defined in an external file, as shown in
Example 10 in Figure 3.

The vocabulary itself maps abstrac-
tions used in the UIML user interface to
specific toolkit widgets. Example 11 in
Figure 3 shows part of a Java vocabulary
that maps the JButton class to a specific
Java Swing object.

Conclusion
In the early days of personal computing,
peripheral devices were tightly coupled to
application software. This meant that users
had to make sure the software they bought
was compatible with their specific printer,
modem, or other peripherals. Making device
drivers a part of the operating system uncou-
pled peripherals from applications, and now
users only need to worry about buying soft-
ware and peripherals that are compatible
with their operating system. This was a
tremendous step forward in the evolution of
personal computing.

UIML can have a similar impact on
application development. By defining user
interfaces in a platform-independent man-
ner, UIML decouples the user interface from
the underlying computing device. This
makes it easier to use a wide range of com-
puting devices in software applications, and
results in user interfaces that are much more
easily adapted to new computing devices as
they emerge on the market.u

References
1. Abrams, M., C. Phanouriou, A.L.

Batongbacal, S. Williams, and J.E.
Shuster. UIML: An Appliance-Indepen-
dent XML User Interface Language.
Proc. of the Eighth International World
Wide Web Conference, May 1999
<www8.org/w8-papers/5b-hyper
text-media/uiml/uiml.html>.

2. Luyten, K. “UIML.Net: A UIML Ren-
derer for .Net.” Limburgs Universitair
Centrum, Jan. 2004 <http://research.
edm.luc.ac.be/kris/projects/uiml.net>.

3. Cherkashin, E. “Python UIML
Renderer.” Apr. 2001 <http://fresh
meat.net/projects/pyuiml>.

4. Sandor, C., and T. Reicher. CUIML: A
Language for Generating Multimodal
Human Computer Interfaces. Proc. of
the UIML 2001 Conference, May 2001
<www.uiml.org/cd_updates/UIML_
2001_Conference/papers/Sandor_
paperFinal.pdf >.

5. Abrams, M., and J.W. Helms. “User
Interface Markup Language (UIML)
Specification 3.1.” Working Draft 3.1.
OASIS Open, Inc., 2004 <www.oasis
-open.org/committees/tc_home.php
?wg_abbrev=uiml>.

Notes
1. Tools for using UIML have been devel-

oped by a number of organizations,
most notably Harmonia, Inc., of
Blacksburg, Va., <www.harmonia.
com>. The U.S. Navy is sponsoring the
development of additional tools through
its Small Business Innovation Research
program, including the development of a
UIML authoring environment.

2. Information about this conference,
including papers presented, is available
on the Web at <www.aristote.asso.
fr/sem/sem0101UIML-en. html>.

3. For more information about the OASIS
UIML standardization technical commit-
tee, and for the most recent draft UIML
specification, see <www.oasis-open.
org/committees/uiml>.

4. UIML is object-based in that it allows defin-
ing classes of parts, but does not support
other object-oriented concepts such as
inheritance.

5. The UIML Web site, <www. uiml.org>,
is a good site for information on UIML.
Besides specifications and document
type definitions, a number of UIML
vocabularies are posted here (see <www.
uiml.org/toolkits/index.htm>).

Introduction to the User Interface Markup Language

About the Author

Jonathan E. Shuster,
founder and president of
Acumenia, Inc., provides
management and techni-
cal services to software
engineering organiza-

tions. He has led development teams for
Navy, Army, and Department of Energy
applications ranging from information
systems to simulation models to three-
dimensional stereo-immersive virtual
environments. He was a member of the
original team that invented the User
Interface Markup Language, an
eXtensible Markup Language-compliant
language for creating user interfaces for
virtually any computing platform. His
passion is helping people understand
information-related problems and
deploying the appropriate technology to
solve those problems

Acumenia, Inc.
1872 Pratt DR, STE 1425
Blacksburg,VA 24060
Phone: (540) 250-1300
Fax: (724) 271-0025
E-mail: jshuster@acumenia.com

February 2-4
16th Annual NDIA SO/LIC
Symposium & Exhibition

Washington, DC
http://register.ndia.org/interview/

register.ndia?

February 7-10
Commercialization of Military and

Space Electronics Conference
& Exhibition

Los Angeles, CA
www.cti-us.com/ucmsemain.htm

February 14-17
LinuxWorld
Boston, MA

http://www.linuxworldexpo.com/
live/12/events/12BOS05A

February 23-27
SIGCSE 2005

Technical Symposium on Computer
Science Education
St. Louis, MO

http://www.ithaca.edu/sigcse2005/
index.html

February 28-March 3
21st National Logistics Conference

& Exhibition
Miami, FL

http://register.ndia.org

March 5-12
IEEE Aerospace Conference

Big Sky, MT
http://www.aeroconf.org

March 15-16
Dayton Information Security Conference

Dayton, OH
www.gdita.org

April 18-21
2005 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

